

We talk in terms of relations, we relate items, objects, ..., etc

- Examples:
- is bigger than,
- is more expensive than,
- is parallel to,
- is a subset of
- is

14/09/2015

 All these expression relate some 'items', or they express the existence or nonexistence of a certain connection between a pair of objects taken in a definite order

Relations

•If we want to describe a relationship between elements of two sets A and B, we can use **ordered pairs** with their first element taken from A and their second element taken from B.

•Since this is a relation between **two sets**, it is called a **binary** relation.

•Definition: Let A and B be sets. A binary relation from A to B is a **SUDSET** of A×B. (Hence, A BINARY **RELATION IS A SET of PAIRS**).

•In other words, for a binary relation R we have $R \subseteq A \times B$. We use the notation aRb to denote that $(a, b) \in R$ and $a\underline{R}b$ to denote that $(a, b) \notin R$.

14/09/2015

3/53

Relations

•When (*a*, *b*) belongs to R, *a* is said to be **related** to *b* by R.

•Example: Let P be a set of people, C be a set of cars, and D be the relation describing which person drives which car(s).

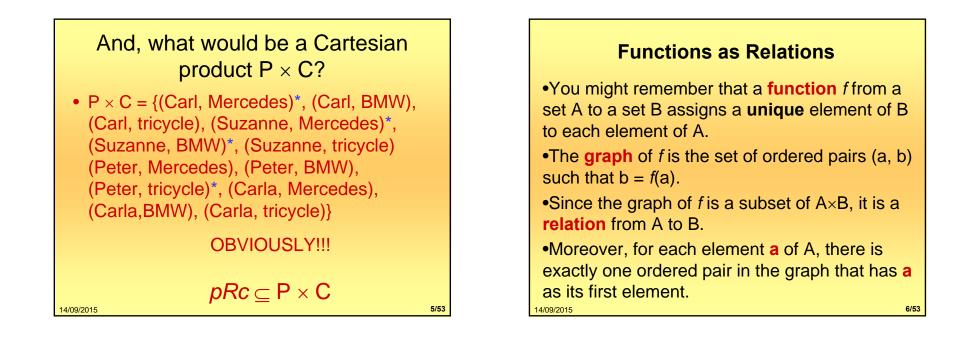
- •P = {Carl, Suzanne, Peter, Carla},
- •C = {Mercedes, BMW, tricycle}
- •D = {(Carl, Mercedes), (Suzanne, Mercedes), (Suzanne, BMW), (Peter, tricycle)}

•This means that Carl drives a Mercedes, Suzanne drives a Mercedes and a BMW, Peter drives a tricycle, and Carla does not drive any of these vehicles.

14/09/2015

4/53

1



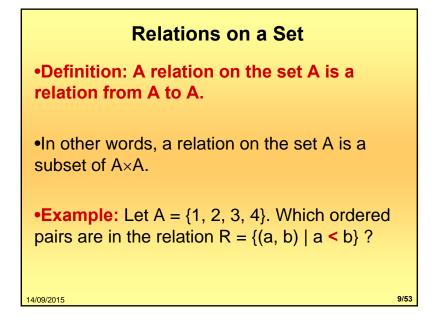
Functions as Relations

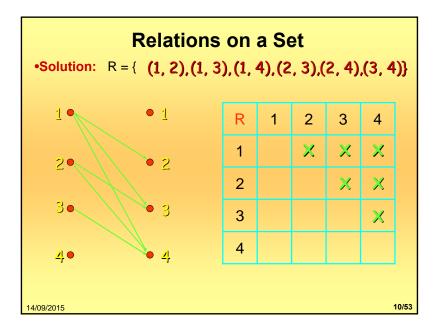
•Conversely, if R is a relation from A to B such that every element in A is the first element of exactly one ordered pair of R, then a function can be defined with R as its graph.

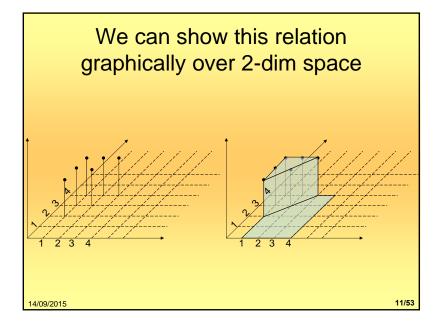
•This is done by assigning to an element $a \in A$ the unique element $b \in B$ such that $(a, b) \in R$.

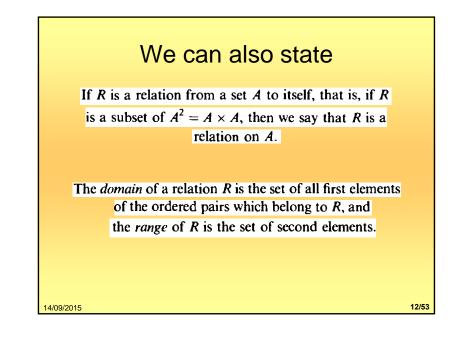
Thus, • Relations are a generalization of functions and they can be used to express a much wider class of relationships between sets

7/53









Examples:	
(a) Let $A = (1, 2, 3)$ and $B = \{x, y, z\}$, and let $R = \{(1, y), (1, z), (3, a \text{ subset of } A \times B. \text{ With respect to this relation.} \}$	
·	•We
1Ry, $1Rz$, $3Ry$, but $1Rx$, $2Rx$, 2	
The domain of R is $\{1,3\}$ and the range is $\{y,z\}$.	(a, a
(b) Let A = {eggs, milk, corn} and B = {cows, goats, hens}. We can a is produced by b. In other words,	define a relation R from A to B by $(a, b) \in R$ if
$R = \{(eggs, hens), (milk, cows), (r)$	•R =
With respect to this relation,	•R =
eggs R hens, milk R cows,	etc. •R =
(c) Suppose we say that two countries are adjacent if they have some	
adjacent to" is a relation R on the countries of the earth. Thus	•Det
	a)∉I
(Italy, Switzerland) $\in R$ but (Ca	nada, Mexico)∉R
14/09/2015	13/53 14/09/20

Properties of Relations e will now look at some useful ways to classify relations. efinition: A relation R on a set A is called **reflexive** if $a) \in R$ for **every** element $a \in A$. e the following relations on {1, 2, 3, 4} reflexive?

•R = {(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)}	•No.
•R = {(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)}	•Yes.
•R = {(1, 1), (2, 2), (3, 3)}	•No.

Definition: A relation on a set A is called **irreflexive** if (a, a) $\notin R$ for **every** element $a \in A$.

Examples:

Consider the following five relations on the set $A = \{1, 2, 3, 4\}$: $R_1 = \{(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)\}$ $R_2 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$ $R_3 = \{(1, 3), (2, 1)\}$ $R_4 = \emptyset$, the empty relation $R_5 = A \times A$, the universal relation

Determine which of the relations are reflexive.

Solutions:

Since A contain the four elements 1, 2, 3, and 4, a relation R on A is reflexive if it contains the four pairs (1, 1), (2, 2), (3, 3), and (4, 4). Thus only R_2 and the universal relation $R_5 = A \times A$ are reflexive. Note that R_1 , R_3 , and R_4 are not reflexive since, for example, (2, 2) does not belong to any of them.

14/09/2015

15/53

More examples Consider the following five relations:

- (1) Relation \leq (less than or equal) on the set Z of integers
- (2) Set inclusion \subseteq on a collection C of sets
- (3) Relation \perp (perpendicular) on the set L of lines in the plane.
- (4) Relation \parallel (parallel) on the set L of lines in the plane.
- (5) Relation | of divisibility on the set N of positive integers. (Recall x|y if there exists z such that xz = y.)

Determine which of the relations are reflexive.

Solutions:

The relation (3) is not reflexive since no line is perpendicular to itself. Also (4) is not reflexive since no line is parallel to itself. The other relations are reflexive; that is, $x \le x$ for every integer x in Z, $A \subseteq A$ for any set A in C, and n|n for every positive integer n in N.

14/09/2015

14/53

Properties of Relations

•Definitions:

•A relation R on a set A is called **symmetric** if (b, $a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

•A relation R on a set A is called **antisymmetric** if whenever $(a, b) \in R$, $(b, a) \notin R$.

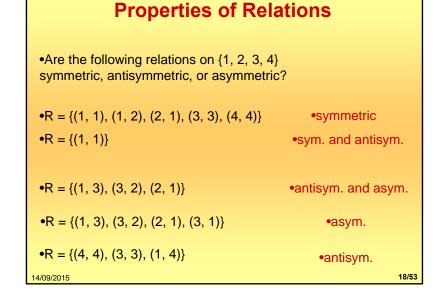
A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is antisymmetric.

•A relation R on a set A is called **asymmetric** if $(a, b) \in R$ implies that $(b, a) \notin R$ for some $a, b \in A$.

R can be both symmetric and antisymmetric, but it can't be symmetric and asymmetric

17/53

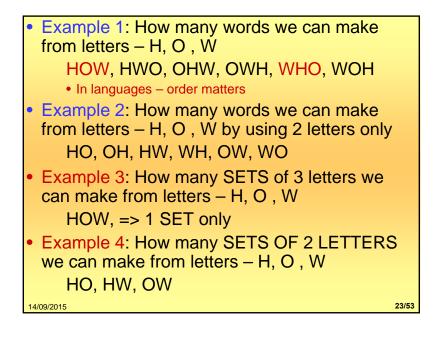
14/09/2015



E	xamples: Which relations are symmetr	ic
	Consider the following five relations on the set $A = \{1, 2, 3, 4\}$: $R_1 = \{(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)\}$ $R_2 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$ $R_3 = \{(1, 3), (2, 1)\}$ $R_4 = \emptyset$, the empty relation $R_5 = A \times A$, the universal relation	
	Diutions : Not symmetric since $(1, 2) \in R_1$ but $(2, 1) \notin R_1$. R_3 is not symmetric since $(1, 3) \in R_3$ but $(3, 1) \notin R_3$	R. The
	relations are symmetric.	.j
14/09	/2015	19/53

Properties of Relations			
• Definition: A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$ for a, b, $c \in A$.			
•Are the following relations on {1, 2, 3, 4} transitive?			
•R = {(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)}	•Yes.		
•R = {(1, 3), (3, 2), (2, 1)}	•No.		
•R = {(1, 3), (3, 2), (1, 2)}	•Yes.		
•R = {(2, 4), (4, 3), (2, 3), (4, 1)}	•No.		
4/09/2015	20/53		

	=	<	>	≤	≥
Reflexive	Х			X	Х
Irreflexive		Х	Х		
Symmetric	Х				
Asymmetric		Х	Х		
Antisymmetric	Х			X	Х
Transitive	Х	Х	Х	Х	Х



Basics of Counting Permutations and Combinations

• Permutations - Order matters

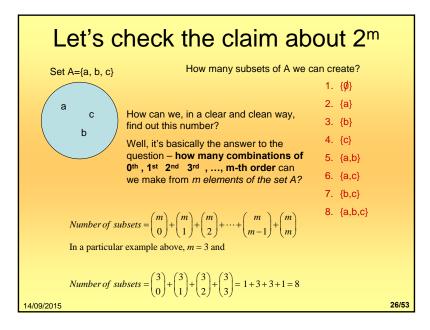
14/09/201

Combinations – Order doesn't matter

Combination	Permutations
abc	abc, acb, bac, bca, cab, cba
abd	abd, adb, bad, bda, dab, dba
acd	acd, adc, cad, cda, dac, dca
bcd	bcd, bdc, cbd, cdb, dbc, dcb

Counting permutations and combinations • Permutations: $P_r^n = \frac{n!}{(n-r)!}$, Note: $P_n^n = \frac{n!}{(n-n)!} = \frac{n!}{0!} = n!$ • Combinations: $C_r^n = {n \choose r} = \frac{n!}{r!(n-r)!} = \frac{r \text{ terms}}{\overline{n(n-1)(n-2)\cdots}}$ • Combinations: $C_r^n = {n \choose r} = \frac{n!}{r!(n-r)!} = \frac{\overline{n(n-1)(n-2)\cdots}}{1*2*3\cdots r}$ • Examples: $C_4^8 = {8 \choose 4} = \frac{8*7*6*5}{1*2*3*4} = 70$ • Examples: Note: ${n \choose r} = {n \choose n-r}$, $eg. {8 \choose 3} = {8 \choose 5}$, Note also: ${n \choose 0} = {n \choose n} = 1$, $eg. {8 \choose 0} = {8 \choose 8} = 1$

Relatio	ns on a Set
•How many different relation n elements?	ons can we define on a set A with
 A relation on a set A is a sul How many elements are in A 	
•There are n ² elements in A× on A) does A×A have?	A, so how many subsets (= relations
	we can form out of a set with m ² subsets can be formed out of A×A.
•Answer: We can define 2 ^{n*}	² different relations on A.
14/09/2015	25/53



Example of Relations Counting

• Show all the different relations on a set A = {a, b}?

•Solution: Relations on A are subsets of A×A, which contains 2² = elements as follows {(a, a), (a, b), (b, a), (b, b)}. •Therefore, different relations on A can be generated by choosing different subsets out of these 4 elements, so there are 2⁴ = 16 relations as follows:

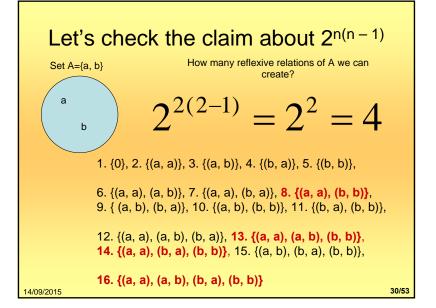
•1. {∅}, 2. {(a, a)}, 3. {(a, b)}, 4. {(b, a)}, 5. {(b, b)},
6. {(a, a), (a, b)}, 7. {(a, a), (b, a)}, 8. {(a, a), (b, b)},
9. { (a, b), (b, a)}, 10. {(a, b), (b, b)}, 11. {(b, a), (b, b)},
12. {(a, a), (a, b), (b, a)}, 13. {(a, a), (a, b), (b, b)},
14. {(a, a), (b, a), (b, b)}, 15. {(a, b), (b, a), (b, b)},
16. {(a, a), (a, b), (b, a), (b, b)}

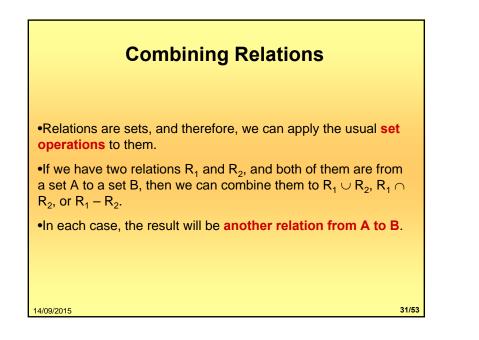
Example: Find the number of relations from $A = \{a, b, c\}$ to $B = \{1, 2\}$.

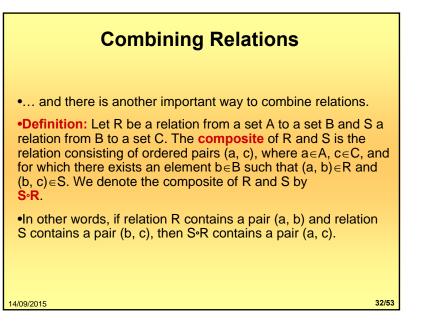
14/09/2015

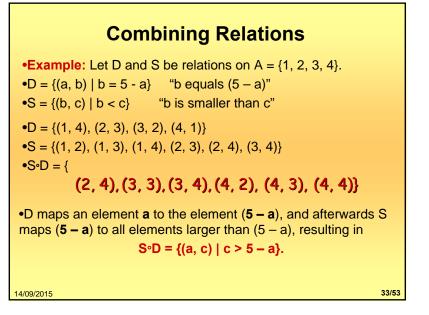
Counting Relations
•Example: How many different reflexive relations can be defined on a set A containing n elements?
 Solution: Relations on R are subsets of A×A, which contains n² elements. Therefore, different relations on A can be generated by choosing different subsets out of these n² elements, so there are 2^{n²} relations.
 A reflexive relation, however, must contain the n elements (a, a) for every a∈A. Consequently, we can only choose among n² – n = n(n – 1) elements to generate reflexive relations, so there are 2^{n(n - 1)} of them.

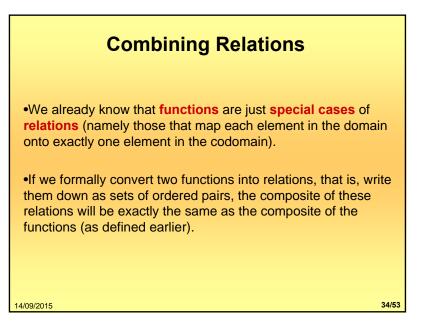
14/09/2015

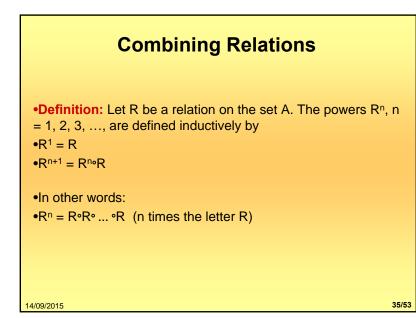


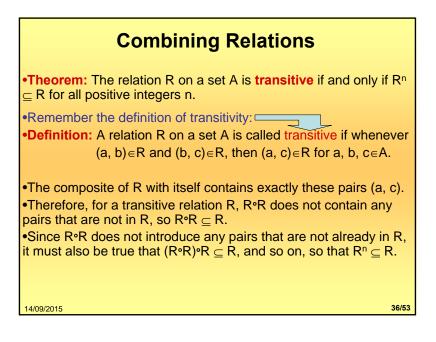












Examples: Which relations are transitive?

Consider the following five relations on the set $A = \{1, 2, 3, 4\}$: $R_1 = \{(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)\}$ $R_2 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$ $R_3 = \{(1, 3), (2, 1)\}$ $R_4 = \emptyset$, the empty relation $R_5 = A \times A$, the universal relation

Solutions:

The relation R_3 is not transitive since (2, 1), (1, 3) $\in R_3$ but (2, 3) $\notin R_3$. All the other relations are transitive.

14/09/2015

37/53

Examples: Which relations are transitive?

- (1) Relation \leq (less than or equal) on the set **Z** of integers
- (2) Set inclusion \subseteq on a collection C of sets
- (3) Relation \perp (perpendicular) on the set L of lines in the plane.
- (4) Relation \parallel (parallel) on the set L of lines in the plane.
- (5) Relation | of divisibility on the set N of positive integers. (Recall x|y if there exists z such that xz = y.)

Solutions:

The relations \leq , \subseteq , and | are transitive. That is: (i) If $a \leq b$ and $b \leq c$, then $a \leq c$. (ii) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$. (iii) If a|b and b|c, then a|c,

On the other hand the relation \perp is not transitive. If $a \perp b$ and $b \perp c$, then it is not true that $a \perp c$. Since no line is parallel to itself, we can have $a \parallel b$ and $b \parallel a$, but $a \parallel a$. Thus \parallel is not transitive. (We note that the relation "is parallel or equal to" is a transitive relation on the set L of lines in the plane.)

14/09/2015

n-ary Relations

 In order to study an interesting application of relations, namely databases, we first need to generalize the concept of binary relations to n-ary relations.

•Definition: Let $A_1, A_2, ..., A_n$ be sets. An **n-ary relation** on these sets is a subset of $A_1 \times A_2 \times ... \times A_n$.

•The sets $A_1, A_2, ..., A_n$ are called the **domains** of the relation, and n is called its **degree**.

14/09/2015

39/53

n-ary Relations

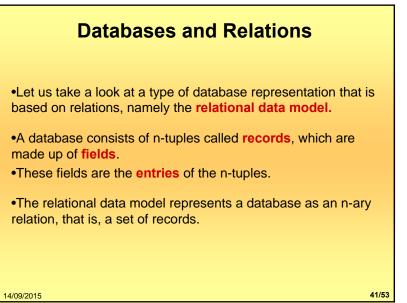
•Example:

- •Let $R = \{(a, b, c) \mid a = 2b \land b = 2c \text{ with } a, b, c \in \mathbf{Z}\}$
- •What is the degree of R?
- •The degree of R is 3, so its elements are triples.
- •What are its domains?
- •Its domains are all equal to the set of integers.
- •ls (2, 4, 8) in R?
- •No.
- •ls (4, 2, 1) in R?

•Yes.

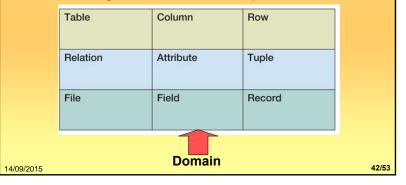
14/09/2015

38/53

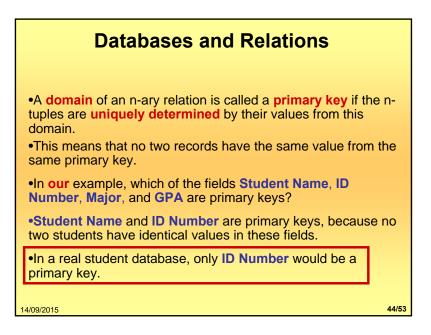


Alternative Terminology

- Although not all tables are relations, the terms table and relation are normally used interchangeably
- The following sets of terms are equivalent:



Databas	es and Relations
	tabase of students, whose records are vith the fields Student Name , ID A:
•R = {(Ackermann, 23145) (Adams, 888323) (Chou, 10214) (Goodfriend, 45387) (Rao, 67854) (Stevens, 78657)	3, Physics, 3.45), 7, CS, 3.79), 6, Math, 3.45), 3, Math, 3.90),
•Relations that represent of since they are often displa	databases are also called tables , ayed as tables.
14/09/2015	43/53



 In a database, a primary key should remain same even if new records are added. Combinations of domains can also uniquely identify n-tuples in an n-ary relation. When the values of a set of domains determine an n-tuple in a relation, the Cartesian product of these domains is called a composite key. 	Databases and Relations
 identify n-tuples in an n-ary relation. When the values of a set of domains determine an n-tuple in a relation, the Cartesian product of these domains is called 	
	 identify n-tuples in an n-ary relation. When the values of a set of domains determine an n-tuple in a relation, the Cartesian product of these domains is called
14/09/2015 45/53	14/09/2015 45/5

Keys

- A key is a combination of one or more columns that is used to identify rows in a relation
- A composite key is a key that consists of two or more columns

14/09/2015

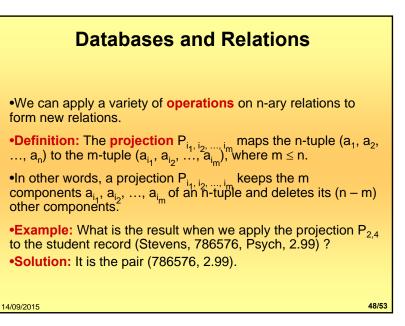
Candidate and Primary Keys

- A candidate key is a key that determines all of the other columns in a relation
- A primary key is a candidate key selected as the primary means of identifying rows in a relation:
 - There is one and only one primary key per relation
 - The primary key may be a composite key

14/09/2015

 The ideal primary key is short, numeric and never changes

47/53



•In some cases, applying a projection to an entire table may not only result in fewer columns, but also in **fewer rows**.

•Why is that?

•Some records may only have differed in those fields that were deleted, so they become **identical**, and there is no need to list identical records more than once.

14/09/2015

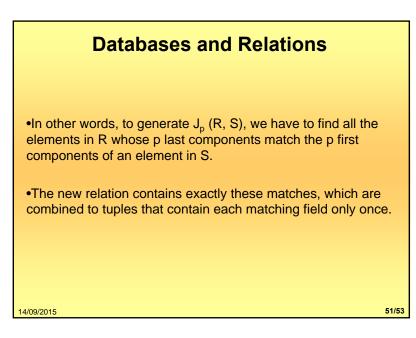
49/53

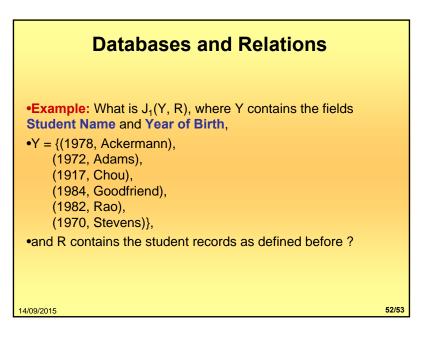
Databases and Relations

•We can use the **join** operation to combine two tables into one **if they share some identical fields**.

•Definition: Let R be a relation of degree m and S a relation of degree n. The join $J_p(R, S)$, where $p \le m$ and $p \le n$, is a relation of degree m + n - p that consists of all (m + n - p)-tuples $(a_1, a_2, ..., a_{m-p}, c_1, c_2, ..., c_p, b_1, b_2, ..., b_{n-p})$, where the m-tuple $(a_1, a_2, ..., a_{m-p}, c_1, c_2, ..., c_p)$ belongs to R and the n-tuple $(c_1, c_2, ..., c_p, b_1, b_2, ..., b_{n-p})$ belongs to S.

14/09/2015





•Solution: The resulting relation is:

 {(1978, Ackermann, 231455, CS, 3.88), (1972, Adams, 888323, Physics, 3.45), (1917, Chou, 102147, CS, 3.79), (1984, Goodfriend, 453876, Math, 3.45), (1982, Rao, 678543, Math, 3.90), (1970, Stevens, 786576, Psych, 2.99)}

•Since Y has two fields and R has four, the relation $J_1(Y, R)$ has 2 + 4 - 1 = 5 fields.

14/09/2015