VCU, Department of Computer Science

CMSC 302

Relations

Vojislav Kecman

Sections 1, 2,3 and 4 in
Ch 8 in $6^{\text {th }}$ edition
Ch 9 in $7^{\text {th }}$ edition

14/09/2015
 \section*{Relations
 \section*{Relations

 -If we want to describe a relationship between elements of two

 -If we want to describe a relationship between elements of two sets A and B, we can use ordered pairs with their first element sets A and B, we can use ordered pairs with their first element taken from A and their second element taken from B taken from A and their second element taken from B

 - Since this is a relation between two sets, it is called a binary

 - Since this is a relation between two sets, it is called a binary relation. relation.

 -Definition: Let A and B be sets. A binary relation from A to B

 -Definition: Let A and B be sets. A binary relation from A to B is a Subset of $A \times B$. (Hence, A BINARY RELATION IS A is a Subset of $A \times B$. (Hence, A BINARY RELATION IS A SET of PAIRS). SET of PAIRS).

 -In other words, for a binary relation R we have $R \subseteq A \times B$. We

 -In other words, for a binary relation R we have $R \subseteq A \times B$. We use the notation $a R b$ to denote that $(a, b) \in R$ and $a \underline{R} b$ to use the notation $a R b$ to denote that $(a, b) \in R$ and $a \underline{R} b$ to denote that $(a, b) \notin R$.} denote that $(a, b) \notin R$.}

14/09/2015 3/53

We talk in terms of relations, we relate items, objects, ..., etc

Examples:

- is bigger than,
- is more expensive than,
- is parallel to,
- is a subset of
- is
- All these expression relate some 'items', or they express the existence or nonexistence of a certain connection between a pair of objects taken in a definite order
14/09/2015

Relations

-When (a, b) belongs to R, a is said to be related to b by R.
-Example: Let P be a set of people, C be a set of cars, and D be the relation describing which person drives which car(s).

- $P=\{$ Carl, Suzanne, Peter, Carla\},
$\cdot \mathrm{C}=\{$ Mercedes, BMW, tricycle $\}$
-D = \{(Carl, Mercedes), (Suzanne, Mercedes),
(Suzanne, BMW), (Peter, tricycle)\}
-This means that Carl drives a Mercedes, Suzanne drives a Mercedes and a BMW, Peter drives a tricycle, and Carla does not drive any of these vehicles.

14/09/2015

And, what would be a Cartesian product $\mathrm{P} \times \mathrm{C}$?

- $P \times C=\left\{\left(\right.\right.$ Carl, Mercedes) ${ }^{*}$, (Carl, BMW), (Carl, tricycle), (Suzanne, Mercedes)*, (Suzanne, BMW)*, (Suzanne, tricycle) (Peter, Mercedes), (Peter, BMW), (Peter, tricycle)*, (Carla, Mercedes), (Carla,BMW), (Carla, tricycle)\}

OBVIOUSLY!!!

$p R c \subseteq P \times C$
14/09/2015 pRO $\subseteq P \times C$

Functions as Relations

- You might remember that a function f from a set A to a set B assigns a unique element of B to each element of A.
-The graph of f is the set of ordered pairs (a, b) such that $b=f(a)$.
- Since the graph of f is a subset of $A \times B$, it is a relation from A to B.
-Moreover, for each element a of A, there is exactly one ordered pair in the graph that has a as its first element.
14/09/2015

Functions as Relations

-Conversely, if R is a relation from A to B such that every element in A is the first element of exactly one ordered pair of R, then a function can be defined with R as its graph.
-This is done by assigning to an element $a \in A$ the unique element $b \in B$ such that $(a, b) \in R$.

Thus,

- Relations are a generalization of functions and they can be used to express a much wider class of relationships between sets
Relations on a Set
-Definition: A relation on the set A is a
relation from A to A.
-In other words, a relation on the set A is a
subset of $A \times A$.
-Example: Let $A=\{1,2,3,4\}$. Which ordered
pairs are in the relation $R=\{(a, b) \mid a<b\}$?
94090215

Relations on a Set

-Solution: $R=\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$

We can also state

If R is a relation from a set A to itself, that is, if R is a subset of $A^{2}=A \times A$, then we say that R is a relation on A.

The domain of a relation R is the set of all first elements of the ordered pairs which belong to R, and the range of R is the set of second elements.

Examples:

(a) Let $A=(1,2,3)$ and $B=\{x, y, z)$, and let $R=\{(1, y),(1, z),(3, y)\}$. Then R is a relation from A to B since R i a subset of $A \times B$. With respect to this relation.

$$
|R y ;| R=, 3 R y, \quad \text { but } 1 R x, 2 R x, \quad 2 R y: \quad 2 R=, 3 R x, 3 R=
$$

The domain of R is $\{1,3\}$ and the range is $\{y, z\}$.
(b) Let $A=\{$ eggs, milk, corn\} and $B=\{$ cows, goats, hens $\}$. We can define a relation R from A to B by $(a, b) \in R i$ a is produced by b. In other words,
$R=\{$ (eggs, hens), (mill, cows), (milk, goats) $\}$
With respect to this relation,
eggs R hens, milk R cows, etc
(c) Suppose we say that two countries are adjacent if they have some part of their boundaries in common. Then " adjacent to" is a relation R on the countries of the earth. Thus
(Italy, Switzerland) $\in R \quad$ but \quad (Canada, Mexico) $\notin R$
14/09/2015

Properties of Relations

-We will now look at some useful ways to classify relations.
Definition: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.
-Are the following relations on $\{1,2,3,4\}$ reflexive?

```
\(\cdot R=\{(1,1),(1,2),(2,3),(3,3),(4,4)\}\)
\(\cdot R=\{(1,1),(2,2),(2,3),(3,3),(4,4)\}\)
```

$\cdot R=\{(1,1),(2,2),(3,3)\}$
-Definition: A relation on a set A is called irreflexive if (a, a) $\notin R$ for every element $a \in A$.

More examples Consider the following five relations:

(1) Relation \leq (less than or equal) on the set \mathbf{Z} of integers
(2) Set inclusion \subseteq on a collection \mathcal{C} of sets
(3) Relation \perp (perpendicular) on the set L of lines in the plane.
(4) Relation || (parallel) on the set L of lines in the plane.
(5) Relation | of divisibility on the set \mathbf{N} of positive integers. (Recall $x \mid y$ if there exists z such that $x z=y$.)
Determine which of the relations are reflexive.

Solutions

 nff for ereve positive inceger in N .

14/09/2015

Properties of Relations

-Definitions:

-A relation R on a set A is called symmetric if (b,
$a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.
-A relation R on a set A is called antisymmetric if whenever $(a, b) \in R, \quad(b, a) \notin R$.

A relation R on a set A such that for all $a, b \in A$,
if $(a, b) \in R$ and $(b, a) \in R$, then $a=b$ is antisymmetric.
-A relation R on a set A is called asymmetric if $(a, b) \in R$ implies that $(b, a) \notin R$ for some $a, b \in A$.
R can be both symmetric and antisymmetric, but it can't be symmetric and asymmetric
14/09/2015

Properties of Relations

-Are the following relations on $\{1,2,3,4\}$ symmetric, antisymmetric, or asymmetric?

$$
\begin{array}{lc}
\bullet R=\{(1,1),(1,2),(2,1),(3,3),(4,4)\} & \text { •symmetric } \\
\cdot R=\{(1,1)\} & \text { •sym. and antisym. } \\
\bullet R=\{(1,3),(3,2),(2,1)\} & \text { •antisym. and asym. } \\
\bullet R=\{(1,3),(3,2),(2,1),(3,1)\} & \text { •asym. } \\
\bullet R=\{(4,4),(3,3),(1,4)\} & \text { •antisym. }
\end{array}
$$

Examples: Which relations are symmetric
 Consider the following five relations on the set $A=\{1,2,3,4\}$:
 $$
R_{1}=\{(1,1),(1,2),(2,3),(1,3),(4,4)\}
$$
 $$
R_{2}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}
$$
 $$
R_{3}=\{(1,3),(2,1)\}
$$
 $$
R_{4}=\varnothing, \text { the empty relation }
$$
 $$
R_{5}=A \times A \text {, the universal relation }
$$

Solutions:

 ohher eralions ate y ymmetic.

Properties of Relations

-Definition: A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$ for $a, b, c \in A$. -Are the following relations on $\{1,2,3,4\}$ transitive?

$$
\begin{array}{ll}
\bullet R=\{(1,1),(1,2),(2,2),(2,1),(3,3)\} & \bullet \text { Yes. } \\
\bullet R=\{(1,3),(3,2),(2,1)\} & \bullet \text { No. } \\
\bullet R=\{(1,3),(3,2),(1,2)\} & \bullet \text { Yes. } \\
\bullet R=\{(2,4),(4,3),(2,3),(4,1)\} & \bullet \text { No. }
\end{array}
$$

Some relations' summary

	$=$	$<$	$>$	\leq	\geq
Reflexive	X			X	X
Irreflexive		X	X		
Symmetric	X				
Asymmetric		X	X		
Antisymmetric	X			X	X
Transitive	X	X	X	X	X

14/09/2015

Basics of Counting

Permutations and Combinations

- Permutations - Order matters
- Combinations - Order doesn't matter

Combination	Permutations
$a b c$	$a b c, a c b, b a c, b c a, c a b, c b a$
$a b d$	$a b d, a d b, b a d, b d a, d a b, d b a$
$a c d$	$a c d, a d c, c a d, c d a, d a c, d c a$
$b c d$	$b c d, b d c, c b d, c d b, d b c, d c b$

14/09/2015

- Example 1: How many words we can make from letters - H, O, W

HOW, HWO, OHW, OWH, WHO, WOH

- In languages - order matters

Example 2: How many words we can make from letters - H, O , W by using 2 letters only
$\mathrm{HO}, \mathrm{OH}, \mathrm{HW}, \mathrm{WH}, \mathrm{OW}, \mathrm{WO}$

- Example 3: How many SETS of 3 letters we can make from letters - H, O , W

HOW, => 1 SET only

- Example 4: How many SETS OF 2 LETTERS we can make from letters - H, O, W

HO, HW, OW
14/09/2015

Counting permutations and combinations

- Permutations: $P_{r}^{n}=\frac{n!}{(n-r)!}$, Note: $P_{n}^{n}=\frac{n!}{(n-n)!}=\frac{n!}{0!}=n$!
- Combinations: $C_{r}^{n}=\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{\overline{n(n-1)(n-2) \cdots}}{1 * 2 * 3 \cdots r}$

$$
C_{4}^{8}=\binom{8}{4}=\frac{8 * 7 * 6 * 5}{1 * 2 * 3 * 4}=70
$$

- Examples:

$$
\begin{aligned}
& \text { Note: }\binom{n}{r}=\binom{n}{n-r}, \quad \text { eg. }\binom{8}{3}=\binom{8}{5} \\
& \text { Note also: }\binom{n}{0}=\binom{n}{n}=1 \text {, eg. }\binom{8}{0}=\binom{8}{8}=1
\end{aligned}
$$

14/09/2015

Relations on a Set

-How many different relations can we define on a set A with n elements?
-A relation on a set A is a subset of $A \times A$.
-How many elements are in $A \times A$?
-There are n^{2} elements in $A \times A$, so how many subsets (= relations on A) does $A \times A$ have?

- The number of subsets that we can form out of a set with m elements is 2^{m}. Therefore, $2^{n^{2}}$ subsets can be formed out of $A \times A$.
-Answer: We can define $\mathbf{2}^{\mathbf{n}^{2}}$ different relations on A.

14/09/2015

Let's check the claim about 2^{m}

```
\begin{tabular}{|c|c|c|}
\hline Set \(A=\{a, b, c\}\) & How many & eate? \\
\hline \multirow[t]{7}{*}{} & \multirow[b]{3}{*}{How can we, in a clear and clean way, find out this number?} & 1. \(\{\phi\}\) \\
\hline & & 2. \(\{\mathrm{a}\}\) \\
\hline & & 3. \(\{\mathrm{b}\}\) \\
\hline & \multirow[t]{4}{*}{Well, it's basically the answer to the question - how many combinations of \(0^{\text {th }}, 1^{\text {st }} 2^{\text {nd }} 3^{\text {rd }}, \ldots\), m-th order can we make from \(m\) elements of the set \(A\) ?} & 4. \(\{\mathrm{c}\}\) \\
\hline & & 5. \(\{\mathrm{a}, \mathrm{b}\}\) \\
\hline & & 6. \(\{\mathrm{a}, \mathrm{c}\}\) \\
\hline & & 7. \(\{\mathrm{b}, \mathrm{c}\}\) \\
\hline \multicolumn{2}{|l|}{Number of subsets \(=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\cdots+\binom{m}{m-1}+\binom{m}{m}\)} & 8. \(\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\) \\
\hline
\end{tabular}
```

In a particular example above, $m=3$ and
Number of subsets $=\binom{3}{0}+\binom{3}{1}+\binom{3}{2}+\binom{3}{3}=1+3+3+1=8$
14/09/2015

Example of Relations Counting

- Show all the different relations on a set $A=\{a, b\}$?
-Solution: Relations on \mathbf{A} are subsets of $\mathbf{A} \times \mathbf{A}$, which contains $2^{2}=$ elements as follows $\{(a, a),(a, b),(b, a),(b, b)\}$ -Therefore, different relations on A can be generated by choosing different subsets out of these 4 elements, so there are $2^{4}=16$ relations as follows:
-1. $\{\phi\}$, 2. $\{(a, a)\}$, 3. $\{(a, b)\}, 4 .\{(b, a)\}, 5 .\{(b, b)\}$,

6. $\{(a, a),(a, b)\}, 7 .\{(a, a),(b, a)\}, 8 .\{(a, a),(b, b)\}$,
7. $\{(a, b),(b, a)\}, 10 .\{(a, b),(b, b)\}, 11 .\{(b, a),(b, b)\}$,
8. $\{(a, a),(a, b),(b, a)\}, 13 .\{(a, a),(a, b),(b, b)\}$,
9. $\{(a, a),(b, a),(b, b)\}, 15 .\{(a, b),(b, a),(b, b)\}$,
10. $\{(a, a),(a, b),(b, a),(b, b)\}$

14/09/2015

Example:

Find the number of relations from $A=\{a, b, c\}$ to $B=\{1,2\}$.

Counting Relations

-Example: How many different reflexive relations can be defined on a set A containing n elements?

- Solution: Relations on R are subsets of $A \times A$, which contains n^{2} elements.
-Therefore, different relations on A can be generated by choosing different subsets out of these n^{2} elements, so there are $2^{n^{2}}$ relations.
-A reflexive relation, however, must contain the n elements (a , a) for every $\mathrm{a} \in \mathrm{A}$.
-Consequently, we can only choose among $\mathrm{n}^{2}-\mathrm{n}=$ $n(n-1)$ elements to generate reflexive relations, so there are $2^{n(n-1)}$ of them.

Let's check the claim about $2^{n(n-1)}$

Set $A=\{a, b\}$
How many reflexive relations of A we can create?

$2^{2(2-1)}=2^{2}=4$

1. $\{0\}$, 2. $\{(a, a)\}$, 3. $\{(a, b)\}, 4 .\{(b, a)\}, 5 .\{(b, b)\}$,
2. $\{(a, a),(a, b)\}, 7 .\{(a, a),(b, a)\}$, 8. $\{(a, a),(b, b)\}$,
3. $\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a})\}, 10 .\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{b})\}, 11 .\{(\mathrm{b}, \mathrm{a}),(\mathrm{b}, \mathrm{b})\}$,
4. $\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a})\}$, 13. $\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{b})\}$,
5. $\{(a, a),(b, a),(b, b)\}, 15 .\{(a, b),(b, a),(b, b)\}$,
6. $\{(a, a),(a, b),(b, a),(b, b)\}$

14/09/2015

Combining Relations

-Relations are sets, and therefore, we can apply the usual set operations to them.
-If we have two relations R_{1} and R_{2}, and both of them are from a set A to a set B, then we can combine them to $R_{1} \cup R_{2}, R_{1} \cap$ R_{2}, or $R_{1}-R_{2}$

- In each case, the result will be another relation from A to B.

Combining Relations

-... and there is another important way to combine relations.
-Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and (b, c) $\in S$. We denote the composite of R and S by $S \circ R$.
-In other words, if relation R contains a pair (a, b) and relation S contains a pair (b, c), then S•R contains a pair (a, c).

Combining Relations

-Example: Let D and S be relations on $A=\{1,2,3,4\}$.

- $\mathrm{D}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{b}=5-\mathrm{a}\} \quad \mathrm{b}$ equals $(5-\mathrm{a})$ "
- $S=\{(b, c) \mid b<c\} \quad$ " b is smaller than c "
$\cdot D=\{(1,4),(2,3),(3,2),(4,1)\}$
$\cdot S=\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$
-S•D = \{

$$
(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)\}
$$

-D maps an element a to the element ($\mathbf{5} \mathbf{- a}$), and afterwards S maps ($\mathbf{5 - a}$) to all elements larger than (5-a), resulting in

$$
S \circ D=\{(a, c) \mid c>5-a\} .
$$

Combining Relations

-Definition: Let R be a relation on the set A. The powers R^{n}, n
$=1,2,3, \ldots$, are defined inductively by

- $\mathrm{R}^{1}=\mathrm{R}$
$\cdot R^{n+1}=R^{n}{ }^{\circ} R$
-In other words:
$\bullet R^{n}=R^{\circ} R^{\circ} \ldots{ }^{\circ} R$ (n times the letter R)

Combining Relations

-We already know that functions are just special cases of relations (namely those that map each element in the domain onto exactly one element in the codomain).
-If we formally convert two functions into relations, that is, write them down as sets of ordered pairs, the composite of these relations will be exactly the same as the composite of the functions (as defined earlier).

Combining Relations

-Theorem: The relation R on a set A is transitive if and only if R^{n} $\subseteq \mathrm{R}$ for all positive integers n .
-Remember the definition of transitivity: \square
-Definition: A relation R on a set A is called transitive if whenever

$$
(a, b) \in R \text { and }(b, c) \in R \text {, then }(a, c) \in R \text { for } a, b, c \in A \text {. }
$$

-The composite of R with itself contains exactly these pairs (a, c). -Therefore, for a transitive relation $R, R \circ R$ does not contain any pairs that are not in R, so $R^{\circ} R \subseteq R$.

- Since $R \circ R$ does not introduce any pairs that are not already in R, it must also be true that $\left(R^{\circ} R\right)^{\circ} R \subseteq R$, and so on, so that $R^{n} \subseteq R$.

Examples: Which relations are transitive?

Consider the following five relations on the set $A=\{1,2,3,4\}$:
$R_{1}=\{(1,1),(1,2),(2,3),(1,3),(4,4)\}$
$R_{2}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
$R_{3}=\{(1,3),(2,1)\}$
$R_{4}=\varnothing$, the empty relation
$R_{5}=A \times A$, the universal relation

Solutions:

The eration R_{3} is not transitive since $(2,1),(1,3) \in R_{3}$ but $(2,3) \notin R_{3}$. All the other elations ate transitive.

14/09/2015

Examples: Which relations are transitive?

(1) Relation \leq (less than or equal) on the set \mathbf{Z} of integers
(2) Set inclusion \subseteq on a collection \mathcal{C} of sets
(3) Relation \perp (perpendicular) on the set L of lines in the plane.
(4) Relation || (parallel) on the set L of lines in the plane.
(5) Relation | of divisibility on the set N of positive integers. (Recall $x \mid y$ if there exists z such that $x z=y$.)

Solutions:

The erelions \leq, C, and are transitive. That is: (i) If $a \leq b$ and $b \leq c$, then $a \leq c$. (ii) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$. (iii) If $\mid b$ and $b \mid$, then $a k$,

On the other hand the relation \perp is not transitive. If $a \perp b$ and $b \perp c$, then it is not true that $a \perp c$. Since no line is paralle to iself, we can have $a \| b$ and $b \| a$, but $a \| a$. Thus $\|$ is not transitive. (We note that the relation "is parallel or equal to" is a transitive relation on the set L of lines in the plane.)

14/09/2015

n-ary Relations

- In order to study an interesting application of relations, namely databases, we first need to generalize the concept of binary relations to n -ary relations.
-Definition: Let $A_{1}, A_{2}, \ldots, A_{n}$ be sets. An n-ary relation on these sets is a subset of $A_{1} \times A_{2} \times \ldots \times A_{n}$.
-The sets $A_{1}, A_{2}, \ldots, A_{n}$ are called the domains of the relation, and n is called its degree.

n-ary Relations

-Example:

-Let $R=\{(a, b, c) \mid a=2 b \wedge b=2 c$ with $a, b, c \in \mathbf{Z}\}$
-What is the degree of R ?
-The degree of R is 3 , so its elements are triples.
-What are its domains?
-Its domains are all equal to the set of integers.
-Is $(2,4,8)$ in R?

- No.
- Is $(4,2,1)$ in R ?
-Yes.

Databases and Relations

-Let us take a look at a type of database representation that is based on relations, namely the relational data model.
-A database consists of n-tuples called records, which are made up of fields.
-These fields are the entries of the n-tuples.
-The relational data model represents a database as an n-ary relation, that is, a set of records.

14/09/2015

Databases and Relations

-Example: Consider a database of students, whose records are represented as 4 -tuples with the fields Student Name, ID Number, Major, and GPA:

$$
\begin{array}{rlrl}
\bullet & \mathrm{R}= & \{(\text { Ackermann, 231455, CS, } & 3.88), \\
& \text { (Adams, } & 888323, \text { Physics, } 3.45), \\
& \text { (Chou, } & 102147, \text { CS, } & 3.79), \\
& \text { (Goodfriend, } & \text { 453876, Math, } & 3.45), \\
& \text { (Rao, } & \text { 678543, Math, } & 3.90), \\
& \text { (Stevens, } & 786576, \text { Psych, } & 2.99)\}
\end{array}
$$

-Relations that represent databases are also called tables, since they are often displayed as tables.
14/09/2015

Databases and Relations

Alternative Terminology

- Although not all tables are relations, the terms table and relation are normally used interchangeably
- The following sets of terms are equivalent:

Databases and Relations

-A domain of an n-ary relation is called a primary key if the ntuples are uniquely determined by their values from this domain.
-This means that no two records have the same value from the same primary key.
-In our example, which of the fields Student Name, ID Number, Major, and GPA are primary keys?
-Student Name and ID Number are primary keys, because no two students have identical values in these fields.
-In a real student database, only ID Number would be a primary key.

Databases and Relations

-In a database, a primary key should remain same even if new records are added.
-Combinations of domains can also uniquely identify n -tuples in an n -ary relation.
-When the values of a set of domains determine an n -tuple in a relation, the
Cartesian product of these domains is called a composite key.

14/09/2015

Databases and Relations

Keys

- A key is a combination of one or more columns that is used to identify rows in a relation
- A composite key is a key that consists of two or more columns

14/09/2015

Candidate and Primary Keys

- A candidate key is a key that determines all of the other columns in a relation
- A primary key is a candidate key selected as the primary means of identifying rows in a relation:
- There is one and only one primary key per relation
- The primary key may be a composite key
- The ideal primary key is short, numeric and never changes

Databases and Relations

-We can apply a variety of operations on n-ary relations to form new relations.
-Definition: The projection $P_{i_{1}, i_{2}}, \ldots, i_{m}$ maps the n-tuple $\left(a_{1}, a_{2}\right.$, , a_{n}) to the m-tuple $\left(\mathrm{a}_{\mathrm{i}_{1}}, \mathrm{a}_{\mathrm{i}_{2}}\right.$,

- In other words, a projection $P_{i_{1}}, i_{2}, \ldots, i_{m}$, keeps the m components $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{m}}$ of $a n, i_{1}$ n-tuple and deletes its $(n-m)$ other components.
-Example: What is the result when we apply the projection $\mathrm{P}_{2,4}$ to the student record (Stevens, 786576, Psych, 2.99)?
-Solution: It is the pair $(786576,2.99)$.

Databases and Relations

-In some cases, applying a projection to an entire table may not only result in fewer columns, but also in fewer rows.
-Why is that?
-Some records may only have differed in those fields that were deleted, so they become identical, and there is no need to list identical records more than once.

14/09/2015

Databases and Relations

-In other words, to generate $J_{p}(R, S)$, we have to find all the elements in R whose p last components match the p first components of an element in S .
-The new relation contains exactly these matches, which are combined to tuples that contain each matching field only once.

Databases and Relations

-We can use the join operation to combine two tables into one if they share some identical fields.
-Definition: Let R be a relation of degree m and S a relation of degree n. The join $J_{p}(R, S)$, where $p \leq m$ and $p \leq n$, is a relation of degree $m+n-p$ that consists of all ($m+n-p$)tuples $\left(a_{1}, a_{2}, \ldots, a_{m-p}, c_{1}, c_{2}, \ldots, c_{p}, b_{1}, b_{2}, \ldots, b_{n-p}\right)$, where the m-tuple ($a_{1}, a_{2}, \ldots, a_{m-p}, c_{1}, c_{2}, \ldots, c_{p}$) belongs to R and the n-tuple $\left(c_{1}, c_{2}, \ldots, c_{p}, b_{1}, b_{2}, \ldots, b_{n-p}\right)$ belongs to S.

Databases and Relations

-Example: What is $\mathrm{J}_{1}(\mathrm{Y}, \mathrm{R})$, where Y contains the fields Student Name and Year of Birth,

- $\mathrm{Y}=\{(1978$, Ackermann),
(1972, Adams),
(1917, Chou),
(1984, Goodfriend),
(1982, Rao),
(1970, Stevens)\},
-and R contains the student records as defined before ?

Databases and Relations

-Solution: The resulting relation is:

- \{(1978, Ackermann, 231455, CS, 3.88),
(1972, Adams, 888323, Physics, 3.45),
(1917, Chou, 102147, CS, 3.79),
(1984, Goodfriend, 453876, Math, 3.45),
(1982, Rao, 678543, Math, 3.90),
(1970, Stevens, 786576, Psych, 2.99)\}
-Since Y has two fields and R has four, the relation $J_{1}(Y, R)$ has $2+4-1$ = 5 fields.

14/09/2015

